siRNA is a hot topic!

Craig C. Mello, PhD,
Nobel Prize in Medicine 2006

New Technologies for RNAi Screening

Dr. Jörg Dennig
Global Product Manager RNAi

Joerg.Dennig@qiagen.com
New Technologies for RNAi Screening

- Introduction
- siRNA Design
- Transfection of siRNA
- Critical factors for Screening Applications
- miRNA

Global Set-up With Three Headquarters in Major Markets

- Switzerland = Automation Center of Excellence
- Hamburg = Assay Center of Excellence
- California = Customer satisfaction center
- Singapore = Customer satisfaction center
- 30 Subs = Direct sales and marketing

Gaitherstown
~ 800 employees

Düsseldorf
~ 1,000 employees

Shanghai/Shenzhen
~ 400 employees
Mechanism of RNAi

- **Defense mechanism**
- **miRNA effects**
- **Target specificity**

New Technologies for RNAi Screening

- Introduction
- siRNA Design
- Transfection of siRNA
- Critical factors for Screening Applications
- miRNA
BioPred si:
An Algorithm Trained to Select Potent siRNA

Hall. et al. Nature Biotechnology July 2005

Evaluation of siRNA design algorithms (Matveeva, O. et al., NAR, 2007):
- Prediction rate true/ false positives + Prediction rate true/ false negatives
- Statistical analysis on the basis of independent publicly accessible siRNA data bases
- BioPredsi > ThermoComposition > DSIR

HP OnGuard siRNA Design
Reducing miRNA related off-target effects

3'UTR-Seed Region Analysis

- Seed region
 - Position 2-7 of miRNA / siRNA sequence
 - miRNA binding to mRNA through seed region
 - Presence of multiple seed region matches increases likelihood of off-target effects
HP OnGuard siRNA Design

- **SNP avoidance:**
 optimized to avoid all known single nucleotide polymorphisms (SNPs) using RefSNP database

- **Interferon motif avoidance**: screened for multiple sequence motifs known to result in an interferon response

*Hornung et al., Nature Medicine, 2005
Judge et al., Nature Biotech, 2005

QIAGEN siRNA Validation Project

- Experimentally proven functionality
- Per siRNA 8 independent data points (replications etc.)
- Largest validated siRNA set (> 3700 siRNAs)
- Algorithm feeds validation, validation feeds algorithm
- QIAGEN algorithm based on ~ 8000 siRNAs (3000 genes)

Krüger et al., 2007; Insights into Effective RNAi Gained from Large-Scale siRNA Validation Screening. Oligonucleotides 17:237–250
New Technologies for RNAi Screening

- Introduction
- siRNA Design
- Transfection of siRNA
- Critical factors for Screening Applications
- miRNA

siRNA Transfection

Characteristics of HiPerFect Transfection Reagent:
- Minimal concentration of siRNA needed
- Minimal cytotoxicity
- Working also in many adherent primary cell types and some suspension cell lines
- Simple optimization/ tolerating broad range of cell densities
- Simple protocol/ easy to adapt to robotic systems
Example: Optimization of HiPerFect transfection for difficult-to-transfect cell type

Optimization = Balance between Efficiency and minimal OTE

![Graph showing relative norm. CDC2 expression over time for UASMC, fine tuning of protocol.

Minimal Off-target Effects with HiPerFect Reagent

Untransf.: HiPerFect

Vacuoles

Reagent L
Optimization of Transfection

High-Throughput-specific parameters for optimization:

- Stability of stock solutions (reproducibility)
- Interaction of reagent with material of flexible tubes etc.
- Liquid handling of reagent solutions
- Edge effects on culture plates
- ...

Very specific for every system!

New Technologies for RNAi Screening

- Introduction
- siRNA Design
- Transfection of siRNA
- Critical factors for Screening Applications
Screening for Survival Kinases: QIAGEN Kinase siRNA Library Screen

Day 1: Seed Cells
Day 2: siRNA Transfection
Day 4: Drug Treatment
Day 5: Cell Death ELISA

MacKeigan, Murphy, and Blenis, Nature Cell Biology 2005

Quantify ELISA on plate reader

QIAGEN Human Genome siRNA Sets

Whole Genome v 4.0, launched in Jan 2008

18000 NMs

7000 genes

691 Kinases

205 Phosphatase

495 GPCR

Druggable Genome v4.0

Predicted Genes

5500 XMs

- 2 siRNA per target gene, 4 siRNA, pool
- 100 pmol, 250 pmol, 1 nmol
- 96 and 384 well
- Mouse WG, Rat DG

- Mouse Genome siRNA Sets: Identical to Human Sets
- Rat Druggable Genome Set
Critical factors for Screening Applications

- Pooling of siRNAs: Specificity versus cost effectiveness
- siRNA modifications
- RNAi rescue experiments: Identifying true positive hits
- Control siRNAs

Pooling of siRNAs

Background:

<table>
<thead>
<tr>
<th>siRNAs:</th>
<th>Separate siRNAs</th>
<th>Pools</th>
</tr>
</thead>
<tbody>
<tr>
<td>siRNA 1</td>
<td>siRNA 2</td>
<td>siRNA 3 (off target)</td>
</tr>
<tr>
<td>siRNA 2</td>
<td>siRNA 3 (off target)</td>
<td>siRNA 2</td>
</tr>
</tbody>
</table>

Transfection:

- Phenotype of siRNA is off target effect

Interpretation:

- Phenotype with all 4 siRNAs?
Reduction in False Positive Rate by Redundancy

Screen 1: DG1 2 duplexes per target, replicate txn
9% of single hits positive in validation
38% of double hits positive in validation

Screen 2: DG2 4 duplexes per target, replicate txn
>60% of hits with >1 hit positive in validation
>80% of hits with >2 hits positive in validation

Better design = more positive siRNA
Better Informatics = more specific siRNA

Data courtesy of S. Mousses, TGEN

What about pooling of siRNA?

High Throughput/Screening:

Low specificity of assay for analysis
⇒ many false positives
⇒ cost of validation is more relevant

Highly specific assay for analysis
⇒ less false positives
⇒ cost of screening is more relevant

⇒ Therefore, QIAGEN offers siRNA sets with separated siRNA, as well as with siRNA pools
2′-O-methyl modification: Risk of lower potency

MAPK-1 siRNA
Sense OMeU: U(m)G(m)CU(m)GACU(m)CCAAGCU(m)CU(m)GUU
Antisense OMe: CA(m)GAGCUUUGAGUCAGCAU

MAPK-14 siRNA
Sense OMeU: C(m)C(m)U(m)ACAGAGAAG(m)GCGGUU
Antisense OMe: CC(m)GCAGUUCUCUGUAGGUU

2′-O-methyl modification: No reduced induction of IFN related genes

Analysis of OAS2 expression 6h and 24h after transfection pIpC as positive control

siRNA is product of millions of years of evolution. It is a perfect molecule!
⇒ Any chemical changes mean a risk to its potency!
Rescue or Redundancy

Echeverri et al. (2006), Minimizing the risk of reporting false positives in large-scale RNAi screens. Nat Methods, 3(10):777-9

RNAi rescue experiments

⇒ QIAGene + siRNA targeting 3'-UTR
RNAi screening control guidance
www.qiagen.com/AllStars

<table>
<thead>
<tr>
<th>Negative control</th>
<th>AllStars Negative Control siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- No phenotype in cell-based assays</td>
</tr>
<tr>
<td></td>
<td>- Lowest off-target profile in GeneChip analysis</td>
</tr>
<tr>
<td></td>
<td>- Shown to enter RISC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Positive control</th>
<th>AllStars Hs Cell Death Control siRNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Transfection and knockdown success visible by light microscopy</td>
</tr>
<tr>
<td></td>
<td>- Ubiquitous utility in all human cell types</td>
</tr>
<tr>
<td></td>
<td>- For optimization of transfection efficiency</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>To monitor the experiment</th>
<th>AllStars Knockdown Level Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Target human CDC2 gene</td>
</tr>
<tr>
<td></td>
<td>- 3 potency levels available: 98%, 75%, and 50%</td>
</tr>
<tr>
<td></td>
<td>- Real-time PCR assays and reagents available</td>
</tr>
</tbody>
</table>

AllStars Negative Control siRNA
www.qiagen.com/AllStars

- Most thoroughly verified negative control siRNA available
- Multiple negative control siRNAs tested for non-specific effects with
 - Affymetrix GeneChip Arrays
 - Cell-based assays
 - □ Live-cell nucleic staining
 - □ Cell number
 - □ Nucleotide incorporation
 - □ Live-cell dye exclusion
 - □ DNA staining
 - □ RISC-incorporation analysis

Affymetrix GeneChip Arrays

- Live-cell nucleic staining
- Cell number
- Nucleotide incorporation
- Live-cell dye exclusion
- DNA staining
- RISC-incorporation analysis

AllStars Hs Cell Death Control siRNA

Phenotype control
- Blend of highly potent siRNAs
- siRNAs targeting genes indispensable for cell survival
- Gene knockdown induces high degree of cell death, visible by light microscopy

Primary normal human bronchial epithelial cells (NHBE) analysed 72h after transfection by microscopic inspection
New Technologies for RNAi Screening

- Introduction to RNAi
- siRNA Design
- Transfection of siRNA
- Critical factors for Screening Applications
- miRNA

microRNAs - micromanagers of gene expression

- Characteristic of miRNAs
 - Endogenous small RNA
 - Regulation of at least 1/3 of the protein encoding genes
 - > 800 miRNAs in human (miRBase V12.0)
 - Mature miRNA ~ 22 nt long
 - miRNA Seed sequences (nt 2-7) crucial in target selection
 - Translational repression
 - Multiple target transcripts per miRNA

- Target mRNAs
 - miRNA binding sites typically at the 3'-UTR
 - Typically multiple miRNA binding sites
 - Binding sites for several different miRNAs in the same transcript
miScript System
Reverse transcription - principle

Detecting miRNAs & mRNAs from the same cDNA preparation
Detection of either mature miRNA or precursor miRNA

A complete offering for miRNA research

<table>
<thead>
<tr>
<th>Purification</th>
<th>Analysis</th>
<th>Functional studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>miRNeasy Mini Kit</td>
<td>miScript Reverse Transcription Kit</td>
<td>HiPerFect Transfection Reagent</td>
</tr>
<tr>
<td>miRNeasy 96 Kit</td>
<td>miScript SYBR® Green PCR Kit</td>
<td>Attractene Transfection Reagent</td>
</tr>
<tr>
<td>miRNeasy 97-98 Kit</td>
<td>miScript Primer Assays</td>
<td>miScript miRNA Mimics</td>
</tr>
<tr>
<td>miRNeasy Protect Animal Blood Kit</td>
<td>miRNeasy Protect Animal Blood Kit</td>
<td>miScript miRNA Inhibitors</td>
</tr>
<tr>
<td>PAXgene Tissue miRNA Kit</td>
<td>Custom miScript Prime Assays</td>
<td>Custom miScript miRNA Mimics and Inhibitors</td>
</tr>
<tr>
<td>PAXgene Blood miRNA Kit</td>
<td>miScript Controls</td>
<td>Human, Mouse, and Rat miScript Precursor Assays</td>
</tr>
<tr>
<td>miScript Primer Assay 96 and 384 Plates</td>
<td>miScript miRNA Mimics Set</td>
<td>Human miScript miRNA Inhibitor Set</td>
</tr>
<tr>
<td>miScript miRNA Control</td>
<td>miScript miRNA Inhibitor 96 and 384 Plates</td>
<td>Rotor-Gene Q</td>
</tr>
</tbody>
</table>

QiAcube – miRNeasy & PAXgene protocols
Leader in Genome Wide Libraries

- QIAGEN **first** company to deliver both druggable and whole genome human siRNA sets

- **Largest user base** of Genome Set customers:
 - 12 'big' Pharma/Biotech Companies
 - Academic and Non Profit: Translational Genomics Institute, Scripps Institute, Dana Farber, Harvard University, GNF, Columbia University, University of Miami, CNRS, Max Planck Institute, Institute Curie, VTT Finland, AIST Japan, ...

- **Annual High-Throughput RNAi User Forum**

- **Scientific advisory board:**
 - Spyro Mousses (TGEN, US)
 - Sumit Chanda (Burnham Institute for Medical Research, US)
 - Natasha Caplen (National Cancer Institute, US)
 - John B. Hogenesch (The Scripps Research Institute, US)
 - Carl Novina (Dana-Farber Cancer Institute, Harvard Medical School, Boston, US)

QIAGEN RNAi Research Team

Sample & Assay Technologies