Simple protein purification with magnetic beads
- from low µL to high mL

Jinyu Zou (邹瑾瑜), Ph.D
Research scientist
GE Healthcare, Uppsala, Sweden
Content

Introduction – Protein purification with Mag Sepharose™

Low sample volume
- Reproducibility
- Immunoprecipitation
- Histidine-tagged protein

Large sample volume
- Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Content

Introduction – Protein purification with Mag Sepharose™

Low sample volume
- Reproducibility
- Immunoprecipitation
- Histidine-tagged protein

Large sample volume
- Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Formats for protein purification and enrichment

<table>
<thead>
<tr>
<th>Format</th>
<th>Microcentrifuge</th>
<th>Centrifuge/vacuum</th>
<th>System/syringe</th>
<th>No special equipment</th>
<th>Magnetic device</th>
</tr>
</thead>
<tbody>
<tr>
<td>SpinTrap™</td>
<td>µg-mg scale</td>
<td>Fixed amount of beads</td>
<td>Fixed maximum sample volume</td>
<td>Automatable</td>
<td></td>
</tr>
<tr>
<td>MultiTrap™</td>
<td>µg-mg scale</td>
<td>Fixed amount of beads</td>
<td>Fixed maximum sample volume</td>
<td>Fixed maximum sample volume</td>
<td>Automatable</td>
</tr>
<tr>
<td>HiTrap™</td>
<td>µg-mg scale</td>
<td>Fixed amount of beads</td>
<td>Variable maximum sample volume</td>
<td>Fixed maximum sample volume</td>
<td></td>
</tr>
<tr>
<td>GraviTrap™</td>
<td>µg-mg scale</td>
<td>Fixed amount of beads</td>
<td>Variable maximum sample volume</td>
<td>Fixed maximum sample volume</td>
<td></td>
</tr>
<tr>
<td>MagSepharose™</td>
<td>Low µg scale-mg scale</td>
<td>Variable amount of beads</td>
<td>Variable sample volume</td>
<td>Automatable</td>
<td></td>
</tr>
</tbody>
</table>

![Images of different formats](image1.png)
Introduction – Protein purification with Mag Sepharose™

- Efficient, high capacity small-scale purification/screening of antibody and histidine-tagged proteins
- Simple capture of target proteins
- Works from low microlitre to high millilitre sample volumes
Introduction – Protein purification with Mag Sepharose™

Equilibration → Binding → Washing → Elution
Content

Introduction – Protein purification with Mag Sepharose™

Low sample volume
 - Reproducibility
 - Immunoprecipitation
 - Histidine-tagged protein

Large sample volume
 - Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Reproducibility

- Binding of human IgG to protein G Mag Sepharose™ Xtra down to 1 µL beads

Experiment

<table>
<thead>
<tr>
<th>Amount beads (µl)</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
<th>No beads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount loaded IgG (µg)</td>
<td>100</td>
<td>80</td>
<td>60</td>
<td>40</td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

Sample Human IgG diluted to 0.5 mg/ml
Media Protein G Mag Sepharose Xtra
Binding buffer PBS
Elution buffer 100 mM glycine-HCl, pH 2.8

The experiment was carried out in a 96-well plate and done automatically on a Tecan robot.
Reproducibility

- Binding of human IgG to protein G Mag Sepharose™ Xtra down to 1 µL beads

Results
Reproducibility

- Binding of human IgG to protein G Mag Sepharose Xtra down to 1 µL beads

Results

Robust and reproducible results
Introduction – Protein purification with Mag Sepharose™

Low sample volume
- Reproducibility
- Immunoprecipitation
- Histidine-tagged protein

Large sample volume
- Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Immunoprecipitation

Work flow

- Magnetic bead with protein A/G or NHS activated bead
- Binding or crosslinking or coupling of antibodies
- Binding of target protein
- Washing
- Elution
Immunoprecipitation
- Enrichment of plasminogen from human plasma with NHS Mag Sepharose™

Experiment:

Medium: 25 μl NHS Mag Sepharose 20% gel slurry
Sample: Human plasma
Sample volume: 150 μl
Antibody: Monoclonal mouse anti-plasminogen, subtype IgG1
Coupling buffer: 150 mM triethanolamine, 500 mM NaCl, pH 8.3
Binding buffer: TBS, 50 mM Tris, 150 mM NaCl, pH 7.5
Wash buffer: TBS, 2 M urea, pH 7.5
Elution buffer: 0.1 M glycine/HCl, 2 M urea,
Immunoprecipitation
- Enrichment of plasminogen from human plasma with NHS Mag Sepharose™

Results:

Start material

SDS-PAGE

1st and 2nd elution

1000 fold enrichment!
Content

Introduction – Protein purification with Mag Sepharose™

Low sample volume
- Reproducibility
- Immunoprecipitation
- Histidine-tagged protein

Large sample volume
- Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Low sample volume
- Histidine-tagged protein

Stable peptide
Compatible with many chemicals
Functional under denaturing conditions

Immobilized Metal Affinity Chromatography
Chelating ligand attached to support
Metal ion (Ni$^{2+}$, Co$^{2+}$, Cu$^{2+}$)
Histidine-tagged protein
Mild elution conditions
Green Fluorescent Protein

$M_r \times 10^3 \text{Da}: \sim 27$

Originally isolated from a jellyfish, it exhibits bright green fluorescence, extremely useful in cell biology and other biological disciplines.

Expressed in *E. coli* with a $(\text{His})_6$-tag located on the C-terminus.
Low sample volume
– Purification of Histidine-tagged GFP with His Mag SepharoseTM Ni

Experiment:

<table>
<thead>
<tr>
<th>Amount beads (µl)</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2.5</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amount loaded GFP-His (µg)</td>
<td>94</td>
<td>75</td>
<td>56</td>
<td>47</td>
<td>38</td>
<td>19</td>
</tr>
</tbody>
</table>

Sample | GFP-(His)$_6$ spiked in \textit{E.coli} lysate

Media | His Mag Sepharose Ni

Bindning buffer | 20 mM Na phosphate, 500 mM NaCl, 20 mM imidazole pH 7.4

Elution buffer | 20 mM Na phosphate, 500 mM NaCl, 500 mM imidazole pH 7.4

16 replicates were done for each gel volume.
The experiment was carried in a 96-well plate.
Low sample volume
– Purification of Histidine-tagged GFP with His Mag Sepharose™ Ni

Results:

High reproducibility!

Eluted protein

SDS-PAGE
Content

Introduction – Protein purification with Mag Sepharose™

Low sample volume
- Reproducibility
- Immunoprecipitation
- Histidine-tagged protein

Large sample volume
- Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Large sample volume

- Purification of 50 mL low expressed Mouse IgG$_2$b on protein A Mag Sepharose$^\text{TM}$ Xtra

Experiment:

<table>
<thead>
<tr>
<th>Sample</th>
<th>monoclonal mouse IgG$_2$b (~ 0.07 mg/mL) in 50 ml diluted cell supernatant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medium</td>
<td>175 µL bead of Protein A Mag Sepharose Xtra</td>
</tr>
<tr>
<td>Binding buffer</td>
<td>PBS</td>
</tr>
<tr>
<td>Elution buffer</td>
<td>100 mM glycine-HCl, pH 2.8</td>
</tr>
</tbody>
</table>

Purification performed in duplicate
Large sample volume

– Purification of 50 mL low expressed Mouse IgG$_{2b}$ on protein A Mag SepharoseTM Xtra
Large sample volume

- Purification of 50 mL low expressed Mouse IgG\textsubscript{2b} on protein A Mag SepharoseTM Xtra

Results:

<table>
<thead>
<tr>
<th></th>
<th>Replicate 1</th>
<th>Replicate 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yield</td>
<td>2.4 mg</td>
<td>2.4 mg</td>
</tr>
</tbody>
</table>

SDS-PAGE

1. LMW
2. Start material
3. Flow through, replicate 1
4. Flow through, replicate 2
5. Eluate replicate 1
6. Eluate, replicate 2
Comparison

<table>
<thead>
<tr>
<th>Protein A Mag Sepharose™</th>
<th>Protein A Mag Sepharose Xtra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein G Mag Sepharose</td>
<td>Protein G Mag Sepharose Xtra</td>
</tr>
<tr>
<td>Antibody binding capacity: +</td>
<td>Antibody binding capacity: ++</td>
</tr>
<tr>
<td>Optimized for Immunoprecipitation</td>
<td>Optimized for purification of antibodies</td>
</tr>
</tbody>
</table>
Content

Introduction – Protein purification with Mag Sepharose™

Low sample volume
- Reproducibility
- Immunoprecipitation
- Histidine-tagged protein

Large sample volume
- Purification and concentration of large volumes of low expression protein

Membrane protein purification with magnetic beads

Summary
Membrane proteins
- Considerations

Expression
- Host cell
- Expression level
- Tag

Preparation
- Cell membranes
- Purification Strategy
 - Aim of purification
 - Detergents
 - Purification media
Membrane proteins
- Detergent solubilization

- Detergents
- Critical Micelle Concentration (CMC)

<table>
<thead>
<tr>
<th>Detergent</th>
<th>CMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lauryldimethylamine -N-oxide (LDAO)</td>
<td>0.02%</td>
</tr>
<tr>
<td>Octyl glucoside (OG)</td>
<td>0.53%</td>
</tr>
<tr>
<td>Fos-Choline 12</td>
<td>0.05%</td>
</tr>
<tr>
<td>Decyl Maltoside (DM)</td>
<td>0.09%</td>
</tr>
<tr>
<td>Dodecyl Maltoside (DDM)</td>
<td>0.009%</td>
</tr>
<tr>
<td>CYMAL™-5</td>
<td>0.12%</td>
</tr>
<tr>
<td>Dodecyl octaethylene glycol ether (C₁₂E₈)</td>
<td>0.005%</td>
</tr>
</tbody>
</table>
Membrane proteins
- Detergent solubilization

Solubilisation
Mix Membranes + detergent stock solution. Incubate at room temperature for 30 min.

Clarification
Centrifuge at 50 000 x g.

Purification (IMAC)
Collect supernatants and add His Mag Sepharose™ Ni into each detergent solubilized membrane protein sample.

Analysis of target membrane protein
Evaluate purity and homogeneity.
Membrane proteins
- Detergent solubilization screening of YedZGFP-His

YedZGFP-His
Integral membrane-flavocytochrome with six transmembrane segments

Mr x 10^3Da: ~ 40

Unknown function

Expressed in *E. coli* with a (His)$_8$-tag located on the C-terminus of the GFP part
Membrane proteins
- Detergent solubilization screening of YedZGFP-His

Experiment

Screen 7 detergents

900 µL of cell membranes solubilized in 100 µL 10% detergents for 30 min

Centrifugation at 50 000 x g for 30 min

Supernatant applied to the His Mag Sepharose™ Ni
 Binding buffer contained 40 mM imidazole

Evaluation
 SDS-PAGE; Deep Purple™ stain, GFP-fluorescence
Membrane proteins
- Detergent solubilization screening of YedZGFP-His

Results
Membrane proteins
- Scale-up from Magnetic beads to Column

YedZGFP-His using DM

Same preparation process as used in the Mag Sepharose™ scale
 Membranes solubilized in 1% DM
 Purification at 0.2% DM

25 mL of solubilized supernatant applied to a 1 mL HisTrap™ HP column
Membrane proteins
- Scale-up from Magnetic beads to Column

Blue curve = A_{280}
Red curve = A_{490}

FT Eluate

YedZGFP-His

Gel: Excel 8-18
Stain: Deep Purple™
Membrane proteins
- Magnetic beads vs column

<table>
<thead>
<tr>
<th>1 mL sample</th>
<th>25 mL sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>His MagSepharose™ Ni</td>
<td>HisTrap™ HP</td>
</tr>
</tbody>
</table>
Questions?
Summary

Magnetic Beads provides:

- Easy screening of target protein with high reproducibility
- Scalability: Simple capture of target protein from small (μL) to large (mL) sample volumes.
- Ideal for simple and rapid detergent screening/purification of membrane proteins.
- Useful information for larger scale preparations
Sepharose, HisTrap, SpinTrap, MultiTrap, HiTrap, GraviTrap, Deep Purple, EXCELGEL are trademarks of GE Healthcare companies. GE, imagination at work and GE monogram are trademarks of General Electric Company.

All third party trademarks are the property of their respective owners.

Purification and preparation of fusion proteins and affinity peptides comprising at least two adjacent histidine residues may require a license under US pat 5,284,933 and US pat 5,310,663, including corresponding foreign patents (assignee: Hoffman La Roche, Inc).

All goods and services are sold subject to the terms and conditions of sale of the company within GE Healthcare which supplies them. A copy of these terms and conditions is available on request. Contact your local GE Healthcare representative for the most current information. First published October 2010.

© 2010 General Electric Company – All rights reserved.

GE Healthcare Bio-Sciences AB, a General Electric Company.